39 research outputs found

    Sequence-Based Plan Feasibility Prediction for Efficient Task and Motion Planning

    Full text link
    Robots planning long-horizon behavior in complex environments must be able to quickly reason about the impact of the environment's geometry on what plans are feasible, i.e., whether there exist action parameter values that satisfy all constraints on a candidate plan. In tasks involving articulated and movable obstacles, typical Task and Motion Planning (TAMP) algorithms spend most of their runtime attempting to solve unsolvable constraint satisfaction problems imposed by infeasible plan skeletons. We developed a novel Transformer-based architecture, PIGINet, that predicts plan feasibility based on the initial state, goal, and candidate plans, fusing image and text embeddings with state features. The model sorts the plan skeletons produced by a TAMP planner according to the predicted satisfiability likelihoods. We evaluate the runtime of our learning-enabled TAMP algorithm on several distributions of kitchen rearrangement problems, comparing its performance to that of non-learning baselines and algorithm ablations. Our experiments show that PIGINet substantially improves planning efficiency, cutting down runtime by 80% on average on pick-and-place problems with articulated obstacles. It also achieves zero-shot generalization to problems with unseen object categories thanks to its visual encoding of objects

    Modulation parameter estimation of LFM interference for direct sequence spread spectrum communication system in alpha-stable noise

    Get PDF
    The linear frequency modulation (LFM) interference is one of the typical broadband interferences in direct sequence spread spectrum (DSSS) communication system. In this article, a novel modulation parameter estimation method of LFM interference is proposed for the DSSS communication system in alpha-stable noise. To accurately estimate the modulation parameters, the alpha-stable noise should be eliminated first. Thus, we formulate a new generalized extended linear chirplet transform to suppress the alpha-stable noise, for a robust time-frequency, transformation of LFM interference is realized. Then, using the Radon transform, the maximum value after transformation and the chirp rate according to the angle related to the maximum value are estimated. In addition, a generalized Fourier transform is introduced to estimate the initial frequency of the LFM interference. For the performance analysis, the Cramér-Rao lower bounds of the estimated chirp rate and the initial frequency of the LFM interference in the presence of alpha-stable noise are derived. Moreover, the asymptotic properties of the modulation parameter estimator are analyzed. Simulation results demonstrate that the performance of the proposed parameter estimation method significantly outperforms existing methods, especially in a low SNR regime

    A joint multi user detection scheme for UWB sensor networks using waveform division multiple access

    Get PDF
    A joint multiuser detection (MUD) scheme for wireless sensor networks (WSNs) is proposed to suppress multiple access interference (MAI) caused by a large number of sensor nodes. In WSNs, waveform division multiple access ultra-wideband (WDMA-UWB) technology is well-suited for robust communications. Multiple sensor nodes are allowed to transmit modulated signals by sharing the same time periods and frequency bands using orthogonal pulse waveforms. This paper employs a mapping function based on the optimal multiuser detection (OMD) to map the received bits into the mapping space where error bits can be distinguished. In order to revise error bits caused by MAI, the proposed joint MUD scheme combines the mapping function with suboptimal algorithms. Numerical results demonstrate that the proposed MUD scheme provides good performances in terms of suppressing MAI and resisting near-far effect with low computational complexity

    CRB-RPL: A Receiver-based Routing Protocol for Communications in Cognitive Radio Enabled Smart Grid

    Get PDF
    As a tool of overcoming radio spectrum shortages in wireless communications, cognitive radio technology plays a vital role in future smart grid applications, particularly in Advanced Metering Infrastructure (AMI) networks with Quality of Service (QoS) requirements. This paper focuses on the investigation of the receiver-based routing protocol for enhancing QoS in cognitive radio-enabled AMI networks, due to their potentials of enhancing reliability and routing efficiency. In accordance with practical requirements of smart grid applications, a new routing protocol with two purposes is proposed: one is to address the realtime requirement while another protocol focuses on how to meet energy efficiency requirements. As a special feature of cognitive radio technology, the protocol have the mechanism of protecting primary (licensed) users whilst meeting the utility requirements of secondary (cognitive radio) users. System-level evaluation shows that the proposed routing protocol can achieve better performances compared with existing routing protocols for cognitive radio-enabled AMI networks

    A robust modulation classification method using convolutional neural networks

    Get PDF
    Automatic modulation classification (AMC) is a core technique in noncooperative communication systems. In particular, feature-based (FB) AMC algorithms have been widely studied. Current FB AMC methods are commonly designed for a limited set of modulation and lack of generalization ability; to tackle this challenge, a robust AMC method using convolutional neural networks (CNN) is proposed in this paper. In total, 15 different modulation types are considered. The proposed method can classify the received signal directly without feature extracion, and it can automatically learn features from the received signals. The features learned by the CNN are presented and analyzed. The robust features of the received signals in a specific SNR range are studied. The accuracy of classification using CNN is shown to be remarkable, particularly for low SNRs. The generalization ability of robust features is also proven to be excellent using the support vector machine (SVM). Finally, to help us better understand the process of feature learning, some outputs of intermediate layers of the CNN are visualized

    LassoNet:Deep Lasso-Selection of 3D Point Clouds

    Get PDF
    Selection is a fundamental task in exploratory analysis and visualization of 3D point clouds. Prior researches on selection methods were developed mainly based on heuristics such as local point density, thus limiting their applicability in general data. Specific challenges root in the great variabilities implied by point clouds (e.g., dense vs. sparse), viewpoint (e.g., occluded vs. non-occluded), and lasso (e.g., small vs. large). In this work, we introduce LassoNet, a new deep neural network for lasso selection of 3D point clouds, attempting to learn a latent mapping from viewpoint and lasso to point cloud regions. To achieve this, we couple user-target points with viewpoint and lasso information through 3D coordinate transform and naive selection, and improve the method scalability via an intention filtering and farthest point sampling. A hierarchical network is trained using a dataset with over 30K lasso-selection records on two different point cloud data. We conduct a formal user study to compare LassoNet with two state-of-the-art lasso-selection methods. The evaluations confirm that our approach improves the selection effectiveness and efficiency across different combinations of 3D point clouds, viewpoints, and lasso selections. Project Website: https://lassonet.github.ioComment: 10 page

    Sporthesia: Augmenting Sports Videos Using Natural Language

    Full text link
    Augmented sports videos, which combine visualizations and video effects to present data in actual scenes, can communicate insights engagingly and thus have been increasingly popular for sports enthusiasts around the world. Yet, creating augmented sports videos remains a challenging task, requiring considerable time and video editing skills. On the other hand, sports insights are often communicated using natural language, such as in commentaries, oral presentations, and articles, but usually lack visual cues. Thus, this work aims to facilitate the creation of augmented sports videos by enabling analysts to directly create visualizations embedded in videos using insights expressed in natural language. To achieve this goal, we propose a three-step approach - 1) detecting visualizable entities in the text, 2) mapping these entities into visualizations, and 3) scheduling these visualizations to play with the video - and analyzed 155 sports video clips and the accompanying commentaries for accomplishing these steps. Informed by our analysis, we have designed and implemented Sporthesia, a proof-of-concept system that takes racket-based sports videos and textual commentaries as the input and outputs augmented videos. We demonstrate Sporthesia's applicability in two exemplar scenarios, i.e., authoring augmented sports videos using text and augmenting historical sports videos based on auditory comments. A technical evaluation shows that Sporthesia achieves high accuracy (F1-score of 0.9) in detecting visualizable entities in the text. An expert evaluation with eight sports analysts suggests high utility, effectiveness, and satisfaction with our language-driven authoring method and provides insights for future improvement and opportunities.Comment: 10 pages, IEEE VIS conferenc

    Compositional Diffusion-Based Continuous Constraint Solvers

    Full text link
    This paper introduces an approach for learning to solve continuous constraint satisfaction problems (CCSP) in robotic reasoning and planning. Previous methods primarily rely on hand-engineering or learning generators for specific constraint types and then rejecting the value assignments when other constraints are violated. By contrast, our model, the compositional diffusion continuous constraint solver (Diffusion-CCSP) derives global solutions to CCSPs by representing them as factor graphs and combining the energies of diffusion models trained to sample for individual constraint types. Diffusion-CCSP exhibits strong generalization to novel combinations of known constraints, and it can be integrated into a task and motion planner to devise long-horizon plans that include actions with both discrete and continuous parameters. Project site: https://diffusion-ccsp.github.io

    Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning

    No full text
    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches
    corecore